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Abstract

Our proposed local vector autoregressive (LVAR) model has time-
varying parameters that allow it to be safely used in both stationary
and non-stationary situations. The estimation is conducted over an
interval of local homogeneity where the parameters are approximately
constant. The local interval is identified in a sequential testing pro-
cedure. Numerical analysis and real data application are conducted
to illustrate the monitoring function and forecast performance of the
proposed model.
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1 Introduction

Non-stationarity or near non-stationarity is a stylized fact of many macroe-
conomic and financial time series such as annual GDP growth, inflation rate,
interest rates and exchange rates, etc. Even though there is no permanent
trend in these series, a high degree of persistence is typical as often detected
visually or measured by a slowly decaying autocorrelation function. This
feature poses many challenges, not only for theoretical modeling, making
inferences and conducting tests, but also for real time economic monitor-
ing and forecasting. Many structural macro or financial models of multi-
ple time series are also defeated by the persistence feature. Although the
structural models prescribe very few lags of state variables, empirically, the
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vectors of a time series require more lags in order to fit the data. To address
the non-stationarity issue, the modeling approaches can be broadly classi-
fied in two: the long memory approach versus the short memory approach.
The long memory view utilizes the data generating process as described
by models with constant parameters and innovations with slowly or non-
decaying effects, such as the fractionally integrated processes in Granger
(1980), Granger and Joyeux (1980) and Hosking (1981), etc. The short
memory view considers persistence as spuriously generated by changes in
basic modeling parameters, such as heteroscedasticity, structural breaks or
regime switching, which are not directly observable and might be inappro-
priately modeled, see discussions in Diebold and Inoue (2001) and Granger
and Hyung (2004). Technically, both the long memory view and the short
memory view have merits in explaining persistence in the data. However,
the short memory view often has economic underpinnings to support the
various changes corresponding to policy shifts, regime transition, or varying
features of exogenous shocks, etc. Conditional on the types of changes, the
underlying model can be simple and intuitive. Also, appropriate modeling of
the sources of changes per se can be helpful in understanding and monitoring
the evolution of the fundamental economic or financial processes.

Recently, an adaptive approach with simple underlying models has
emerged from the short memory class, which can incorporate the various
sources of changes without explicitly assuming change types and timing.
Specifically, the state variables are described by some simple dynamic pro-
cess such as the autoregressive (AR) process or AR process with exogenous
variables (ARX), and the parameters of the processes are time-dependent
without explicit functional form. Under the conditions that most of the
parameters are slowly evolving with small variations, and that large varia-
tions or breaks happen infrequently, the time series can be divided into local
intervals such that over each local interval the data generating process can
be well approximated by a local AR (LAR) or a local ARX (LARX) model
with constant parameters. This approach is particularly useful in real-time
monitoring of changes and forecasting under the assumption that the local
model holds for the forecast horizon. Chen, Härdle and Pigorsch (2010) pro-
pose the LAR detection and estimation methodology and successfully apply
it to forecasting realized volatility in financial time series. Chen and Niu
(2013) extend the method to an LARX model and apply it to yield curve
modeling and forecasting, where under a traditional dynamic Nelson-Siegel
factor model (Diebold and Li, 2006) each state yield factor is modeled as
an LARX with inflation as the exogenous variable. Chen and Niu (2013)
demonstrate that the data-driven LARX model brings clear advantages in
forecasting the whole yield curve, when compared to a wide spectrum of
traditional yield curve models with rolling or recursive estimation strategies
using predetermined estimation windows. Moreover, the detected local in-
tervals and the resultant parameter evolutions estimated in real-time are of
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great help for monitoring the yield curve dynamics, understanding its chang-
ing relationship with the inflation factor, and providing evidence on policy
changes and on changing interest rate behavior during the recent financial
crisis. This paper generalizes the univariate process of LAR or LARX into
a local vector autoregressive (LVAR) framework. The general framework
can be used in multivariate structural models for effective modeling and
real-time applications in macroeconomics and finance.

Within the VAR modeling framework, our LVAR modeling shares some
similar background with the threshold vector autoregressive (TVAR) model
and the time-varying VAR model, which feature coefficient changes condi-
tional on states and time, respectively. The threshold autoregressive type
model is more suitable for nonlinear time series; see a thorough discus-
sion by Tong (1983) and the development and applications by Tong and
Lim (1980), Tong (1987) and Tsay (1989), among others. Tsay (1998) pro-
poses a TVAR model to generalize the model into multivariate settings.
The model has been widely applied to business cycle effects, policy regime
and transmission mechanism in developed economies, such as Balke (2000),
Atanasova (2003), Li and St-Amant (2010), and Afonso, Baxa and Slavik
(2011), etc. The time-varying VAR models are more flexible for studying
the changing behaviors of economic systems, which are widely applied to
model changes in macroeconomic policies, regimes and exogenuous shocks,
such as Cogley and Sargent (2001) and Cogley and Sargent (2005) on a
small scale macroeconomic VAR with time-varying coefficients and stochas-
tic volatility, respectively. Besides, Primiceri (2005) studies the causes of the
Great Moderation with both time-varying coefficients and stochastic volatil-
ity. However, the flexibility of TVAR and of time-varying VAR is achieved
at the cost of substantially increasing the dimension of parameter space.
Furthermore, specific assumptions on the types and process of the parame-
ter changes are required. Also, the estimation is technically demanding and
time consuming. In contrast, the LVAR proposes much simpler underlying
models, without specific assumptions on change types and processes, and
the estimation is relatively simple.

The rest of the paper is arranged as follows. In Section 2, we discuss the
method with modeling assumptions, the local interval detection technique
using an empirical testing procedure, and the applications of monitoring
and forecasting the vector of variables in a multivariate setting. In Section
3, we demonstrate the properties of the testing procedure and the forecast
performance using a Monte Carlo study. Section 4 provides the real data
analysis, where we illustrate the use of LVAR with applications to modeling
and forecasting US yield curves. Finally, Section 5 concludes.

3



2 Method

In this section, we propose a local vector autoregressive (LVAR) model to
estimate the joint dynamics of a vector of variables. The LVAR model allows
parameters to be time dependent, without any particular assumptions on the
time variation. Time-varying parameters at each point in time are, of course,
too flexible to constitute an identifiable dynamic model. We therefore em-
ploy a local homogeneity assumption to balance between model flexibility
and estimation feasibility. Local homogeneity assumes that at any particu-
lar time point there exists a past time interval, over which the local sample
can be well approximated by a VAR model with constant parameters. A
sequential testing procedure is used to find the longest interval that satisfies
the local homogeneity assumption. The identified interval that defines the
locally homogeneous sample is called the interval of local homogeneity.

Instead of using all the available past information, as in the recursive es-
timation approach, we conduct the estimation utilizing the interval of local
homogeneity in the adaptive approach; the interval satisfying local homo-
geneity is time dependent and of possibly varying interval length. It is also
different from the conventional rolling window or recursive window technique
that adopts a fixed window size or expands the window size throughout the
estimation. The fitted adaptive model is then used to monitor the model
parameters and stable intervals, and to forecast the variables if the model
is sufficiently parsimonious and the average intervals are sufficiently long to
include efficient information for accurate prediction.

2.1 Adaptive vector autoregressive model

Let Xt ∈ IRd denote d−dimensional autoregressive time series variables,
with t = 1, · · · , T . The adaptive vector autoregressive model is defined with
time-varying parameters as:

Xt = ct +A1tXt−1 + · · ·+AptXt−pt + εt, εt ∼ N(0,Σt),

where ct = (c1t, · · · , cdt)> is the intercept vector at time point t and Ajt is a
d× d matrix for j = 1, · · · , p. The stochastic innovation εt is assumed to be
Gaussian distributed satisfying E(εt) = 0 and E(εtε

>
t ) = Σt. Moreover, we

assume that there is no serial correlation between any two innovations across
time, that is E(εtε

>
t−k) = 0 for k 6= 0. The LVAR model, with time-varying

parameters, is appropriate in a non-stationary situation where structural
changes exist. It also works well in the homogeneous case by fixing the
parameters as constant. In either case, the estimation is conducted under
the local homogeneity assumption. That is, the multivariate time series are
approximated by a parametric model over an interval of local homogeneity.

Although the order of the LVAR model, denoted by p, is allowed to be
more than 1, we fix the lag order to 1 for ease of elaboration. In addition,
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the adoption of the simplest model structure is significantly motivated by
tractability of monitoring and good out-of-sample forecast performances. In
Section 3, we investigate the model misspecification issue in a simulation
study, where the true data generating process has a higher order than the
recommended one. It shows that the LVAR model of order 1 provides stable
performance.

The LVAR model of order 1, represented in matrix form, is as follows:

Xt = ct +AtXt−1 + εt.

For notational simplicity, we denote the unknown parameters by Θt =
(ct, At,Σt).

2.2 Estimation under local homogeneity

Suppose that at time point t, the time series is homogeneous with Θt = Θ
over an interval It = [t − mt + 1, t]. Parameter mt is the interval length,
corresponding to the number of observations in the local sample. The local
(quasi-) log-likelihood function is defined as:

` (It,Θ) = −mt

2
ln |2πΣt| −

1

2

t∑
s=t−mt+1

ε>s Σ−1
t εs

from which we obtain the local maximum likelihood estimate (MLE):

Θ̃t = argmax ` (It,Θ) .

Now we relax the local homogeneity assumption such that Θt ≈ Θ.
Then the modeling bias of the parametric model with constant parameter
Θ and the local parametric model with time dependent parameter Θt can
be measured by:

∆t = |` (It,Θ)− ` (It,Θt) |1/2

which should be small. Therefore, the local MLE, though not unbiased in
this situation, can be used.

In practice, the interval of local homogeneity is unknown. The question
is how to identify it or equivalently how to select interval length mt at any
particular time point t. With too large a value, there is a high probability
of having non-trivial modeling bias, which violates the local homogeneity
assumption. On the contrary, a small value of mt though satisfying a small
modeling bias, unnecessarily discards too many observations that are useful
for estimation. The goal is to select the longest interval that does not violate
the local homogeneity assumption.

Suppose there are K candidate intervals at time point t, which contain
the interval of local homogeneity It:

I
(1)
t = [t−m(1)

t + 1, t], · · · , I
(K)
t = [t−m(K)

t + 1, t]
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with I
(1)
t ⊂ · · · ⊂ I

(K)
t . A sequential testing procedure helps to select

the longest interval that satisfies local homogeneity. It is worth noting that
beyond the selected interval, there is a high probability of structural changes.
The adaptive technique proceeds as follows. The procedure starts from the

shortest interval I
(1)
t , over which the local homogeneity assumption probably

holds. We accept the interval and denote the accepted estimator by Θ̂
(1)
t =

Θ̃
(1)
t . Iteratively, the procedure extends to the next interval I

(k)
t for k ≥ 2,

where we introduce the test statistic:

T
(k)
t =

∣∣∣`(I(k)
t , Θ̃

(k)
t

)
− `
(
I

(k)
t , Θ̂

(k−1)
t

)∣∣∣1/2,
which measures the divergence of the hypothetical model from the recently
accepted local model. If the divergence is significant, where the significance
level is controlled by a critical value ζk, it indicates that there is a significant
structure change larger than the one arising due to sampling changes. In this
case, we reject the null hypothesis of local homogeneity and terminate the
selection procedure. The last accepted interval would be the final selection

and we have Θ̂
(j)
t = Θ̂

(k−1)
t for j = k, · · · ,K. Here j denotes the index of

the candidate interval where the procedure is terminated. Otherwise, we

accept the longer interval I
(k)
t , and update estimate Θ̂

(k)
t = Θ̃

(k)
t . The test

procedure is continued on the next interval until either a change is detected
or the longest candidate interval is reached.

2.3 Calibrate critical values

The success of the adaptive selection procedure depends on the critical val-
ues, which are calibrated in Monte Carlo experiments. As the critical values
control the significance level under the local homogeneity assumption that
requests a small modeling bias, we generate samples with homogeneity and
measure the modeling bias using an adaptive estimation. The critical values
are selected such that they are capable of providing the prescribed perfor-
mance of the testing procedure.

The homogeneous VAR processes are generated with constant parame-
ters Θ∗ = (c∗, A∗,Σ∗), such that

Xt = c∗ +A∗Xt−1 + εt, εt ∼ N(0,Σ∗).

Each process includes T observations and the generation is repeatedN times.

For each generated process Xn
1:T , n = 1, ..., N , the same interval set I

(k)
t is

used everywhere for t = mK , · · · , T and k = 1, · · · ,K, where mK is the

longest interval length for interval I
(K)
t . In the following, for ease of elabo-

ration, we drop the series index n. Under the assumption of homogeneity,
the estimation error can be measured by the fitted log-likelihood ratio over
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each interval:

Rk = EΘ∗

∣∣∣`(I(k), Θ̃
(k)
t

)
− `

(
I(k),Θ∗

)∣∣∣1/2 , (1)

where Rk can be computed numerically with knowledge of Θ∗.
Once a set of critical values ζ1, · · · , ζK is given, one can employ the

adaptive procedure, by checking the significance of the test statistic T
(k)
t ,

to obtain the adaptive estimate Θ̂
(k)
t of the time-dependent parameter Θt.

Given the MLE Θ̃
(k)
t of the constant parameter Θ∗, the temporal realized

modeling bias can be measured as:

δ
(k)
t =

∣∣∣`(I(k), Θ̃
(k)
t

)
− `
(
I(k), Θ̂

(k)
t

)∣∣∣1/2 .
The adaptive estimation should behave as well as the true underlying char-
acteristics under the null of time homogeneity, in the sense that the modeling
bias is bounded by estimation error Rk, with knowledge of the true model,
in Equation (1):

EΘ∗

(
δ

(k)
t

)
= EΘ∗

∣∣∣`(I(k), Θ̃
(k)
t

)
− `
(
I(k), Θ̂

(k)
t

)∣∣∣1/2 ≤ Rk. (2)

Clearly, the critical values are the only unknown parameters in the above
inequality Equation (2), which can be calibrated.

The computation of critical values relies on two hyperparameters, the

interval candidates
(
I

(1)
t , · · · , I(K)

t

)
and Θ∗. In our study, at each point

of time, we consider K = 19 intervals for the adaptive estimation, starting
with 12 months and a continuous increment of M = 6 months between any
adjacent intervals, i.e., 120 months (10 years) is the maximal sample size.
Ideally, Θ∗ should be close to the true parameter underlying the real data
series at each point of time, which is actually the target of our estimation.
In practice, we approximate Θ∗ with the estimate from a sub-sample, for
example, the sub-sample before the forecast exercise starts. We find that the
adaptive technique is quite robust to the selection of the hyperparameters,
as is illustrated in Section 3. There is no significant difference in terms of
forecast accuracy for different sets of interval candidates determined by K
and M as well as for possible misspecifications of Θ∗ with ±20% deviation
from the true values.

In the following numerical analysis, we use the MLE of the available real
sample in the 1983:1-1997:12 period as Θ∗, i.e., using information before
the forecast exercise starts. We then generate a homogeneous VAR series,
and calibrate the set of critical values as described above. The same set
of calibrated critical values is adopted for every time point throughout the
real-time estimation and forecast.

The adaptive estimation algorithm for any particular time point t is as
follows:
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1. Calibrate critical values given a set of interval candidates
{
I

(k)
t

}K
k=1

.

• Generate homogeneous VAR processes with constant parameter
Θ∗. We use the MLE for the time point before the first forecast
origin.

• Compute MLEs Θ̃
(k)
t and the risk bound Rk over each interval

candidate.

• Given an initial set of critical values, obtain the adaptive esti-

mator Θ̂
(k)
t . Compute the realized modeling bias δ

(k)
t and check

the risk bound, (2). If it holds, reduce the critical values. Other-
wise, increase the critical values. Repeat until the cutting point
is found.

2. Given the calibrated critical values, for the data set of interest to be
investigated, conduct the sequential testing procedure to identify the
interval of local homogeneity and estimate the adaptive estimator over
time. Starting from an initial time t0, for t ≥ t0:

• Initialization: We accept the shortest interval and set Θ̂
(1)
t =

Θ̃
(1)
t .

• Loop: For k ≥ 2,

if T
(k)
t =

∣∣∣`(I(k)
t , Θ̃

(k)
t

)
− `
(
I

(k)
t , Θ̂

(k−1)
t

)∣∣∣1/2 ≤ ζk, we accept the

interval I
(k)
t and update the estimate:

Θ̂
(k)
t = Θ̃

(k)
t .

Otherwise, terminate the procedure and we have:

Θ̂
(j)
t = Θ̂

(k−1)
t , j = k, · · · ,K.

• Final estimate: Θ̂t = Θ̂
(K)
t .

3. We assume that the interval of local homogeneity is extendable over
the forecasting horizon, denoted by h. The fitted LVAR model is used
for the prediction : X̂t+h = ĉt + ÂtXt.

3 Simulation

In this section, we conduct a simulation study to demonstrate the perfor-
mance of the LVAR model. In particular, we evaluate the forecast accuracy
of the adaptive procedure, compared to alternative methods with window
length selection such as the rolling window technique. Furthermore, the
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robustness of the forecast performance for the adaptive procedure is investi-
gated with respect to the choice of hyperparameters (Θ∗, K, M). Moreover,
we address the model misspecification issue of whether the simplest adaptive
model of order 1 is sufficient to handle autoregressive processes of a higher
order.

3.1 Simulation design

We consider two kinds of scenarios: a homogeneous scenario with globally
constant parameters, denoted as HOM, and a heterogeneous scenario with
time-varying parameters shifting from one level to another, i.e., a regime
switching scenario, denoted as RS.

In the HOM scenario, we calibrate the VAR coefficients from a three fac-
tor VAR(1) model constructed by Nelson-Siegel yield factors with US yield
curve data from 1983 to 1997. The Nelson-Siegel (NS) model is parameter-
ized according to Diebold and Li (2006), and the data set is a fifteen yield
series as used in Chen and Niu (2013). We denote the underlying parameters
as Θ0 = (c0, A0,Σ0) and keep them constant throughout the whole sample.
In the RS scenario, we design two experiments and label them as:

RS-A, where A denotes the vector autoregressive coefficient matrix, and

RS-C, where C denotes the intercept vector.

In the RS scenarios, only the labeled parameters shift from the original level
to a new set of parameter values estimated using a different subsample of
the NS factors, during the recent financial crisis from 2008 to 2010. The
other parameters remain the same as in the original set up.

For each scenario and experiment we simulate 200 data series, each with
400 observations. In the RS scenarios, each of the regimes lasts for 200 time
points. The details of the scenario designs regarding timing and parameters
are described in Table 1.

We employ both the adaptive procedure and the rolling window strate-
gies to compute the one-step ahead forecasts for the same forecasting period
from t = 122 to 400 for each of the simulated samples. In the adaptive case,
the critical values are calibrated using the true underlying parameters, i.e.,
Θ∗ = Θ0. The candidate intervals start from 12 months (1 year) and end at
120 months (10 years), with K = 19 and M = 6. The interval lengths are:

12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120.

Figure 1 displays the resulting critical values that are used in each scenario.
At the same time, we consider 19 alternative window sizes in the prediction
using the rolling window technique, i.e., ranging from I1 (12 months) to IK

(10 years), which correspond to our interval candidates in the adaptive pro-
cedure. Forecast accuracy is determined by the forecast root mean squared
error (RMSE) values.
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Scenarios Parameters

HOM c0 =

 0.093
0.111
−0.314

 A0 =

 0.989 0.011 −0.005
−0.031 0.933 0.054

0.062 0.090 0.853


RS Phase 1 Phase 2

t ∈ [1, 200] t ∈ [201, 400]

RS-A At =

 0.989 0.011 −0.005
−0.031 0.933 0.054

0.062 0.090 0.853

 At =

 0.493 −0.167 0.177
0.259 0.952 −0.082
0.523 0.511 0.462


RS-C ct = (0.093, 0.111,−0.314)> ct = (2.789,−1.974,−3.503)>

Table 1: Parameters in the simulation scenarios. HOM refers to the ho-
mogeneous scenario; RS refers to the regime-switching (structural change)
scenario. In each of the RS scenarios, only the labeled parameter is changed
in Phase 2. The other parameters remain the same as in the original set-up.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

5

10

15

20

25

30

35

40

45

50
Critical Values

Interval Index

Figure 1: Critical values. The hyperparameters are M = 6, K = 19 and
Θ∗ = Θ0.

3.2 Forecast accuracy

Table 2 presents the RMSE values of the adaptive technique and the alter-
natives. For ease of exposition we do not report all forecasting results of
the rolling windows. Instead, we only list those window sizes yielding the
best forecast accuracy (with minimal RMSE values) and the worst accuracy
(with maximum RMSE values). The respective rolling window sizes are in-
dicated in the parentheses. The number of times that the LVAR is superior
to the 19 alternative window choices is highlighted in the column of “No. of
Winning”.

The numerical results reveal that the adaptive approach with varying
local window sizes introduces more flexibility into the procedure, leading to
a comparable performance to the optimal sample under the homogeneous
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Rolling window (window size) Adaptive No. of
Scenario Best Worst Winning

HOM 0.336 (120) 0.424 (12) 0.340 13/19
NS1 RS-A 0.400 (78) 0.517 (12) 0.395 19/19

RS-C 0.501 (54) 0.606 (12) 0.489 19/19

HOM 0.370 (120) 0.474 (12) 0.374 14/19
NS2 RS-A 0.399 (120) 0.514 (12) 0.398 19/19

RS-C 0.472 (72) 0.588 (12) 0.465 19/19

HOM 0.816 (120) 1.049 (12) 0.826 13/19
NS3 RS-A 0.851 (120) 1.084 (12) 0.855 16/19

RS-C 0.953 (96) 1.195 (12) 0.954 16/19

Table 2: Forecast accuracy. The rolling window adopts one of the pre-
determined window lengths of k ×M , where k = 1, · · · , 19, and M = 6,
throughout the whole sample. The adaptive technique adopts a selected
time-varying window length among the choices of the interval sets, at each
point of time. For the performance of the rolling windows, only the best and
worst results with the related window choices are reported. We also report
the number of wins of the adaptive technique compared to the 19 rolling
estimation alternatives.

scenario and a generally better performance under the scenarios with struc-
tural changes. More specifically, in the homogeneous scenario, the adaptive
technique, though with a misspecified assumption of time-varying coeffi-
cients, still provides reasonable accuracy. In the structural change scenarios
with time-varying parameters, our technique is superior to all 19 alternative
rolling window estimations.

The adaptive interval selection procedure contributes to the improve-
ment of forecast accuracy and simultaneously provides stable performances.
In the structural change scenarios with a parameter shift at t = 201, the
average values of the selected intervals drop quickly after that point, see
Figure 2. As the sample following the new data generating process extends,
the lengths of the selected intervals increase. The conventional rolling win-
dow technique with a fixed window size, on the other hand, does not have
such flexibility. Moreover, in the homogeneous scenario where there is no
structural change, the optimal interval selection should be the longest one
of 120 months. The average values of the selected intervals are quite reason-
able, with values around 108 months (k = 17) for each time point. A direct
comparison confirms that the simple yet flexible LVAR model can be safely
applied to both stationary and non-stationary situations.
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Figure 2: The average value of the selected intervals from time index 122 to
400 over the 200 generated processes in the HOM and RS-A scenarios.

3.3 Robustness check

The forecast accuracy of the adaptive model depends on the critical values
which themselves depend on the underlying hyperparameters K, M and Θ∗.
As an illustration, we analyze the robustness of the hyperparameter choices
under the RS-A scenario. The default values are K = 19, M = 6 and Θ∗ =
Θ0. We report the forecast accuracy with different hyperparameters and also
analyze the impact on the forecast performance when Θ∗ is misspecified.

We first consider four alternative interval sets: given M = 6, taking
fewer or more candidates with K = 10 or K = 30; given K = 19 with the
first interval being 12 months, taking shorter or longer steps with M = 3 or
M = 12 between two adjacent intervals. With these alternative interval sets,
the critical values are re-calibrated. In order to match the longest possible
interval length for I(K), the initial forecasting points for cases with K = 10
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default K = 10 K = 30∗1 M = 3 M = 12 default∗2 mis08∗2 mis12∗2

NS1 0.395 0.395 0.409 0.396 0.397 0.348 0.349 0.347
NS2 0.398 0.402 0.403 0.400 0.399 0.378 0.381 0.376
NS3 0.855 0.862 0.862 0.858 0.857 0.844 0.849 0.841

Table 3: Robustness testing (scenario RS-A): RMSE values. We compare
the default case of M = 6, K = 19 and Θ∗ = Θ0 to several cases of
alternative hyperparameters of M = 3 or 12, K = 10 or 30 and misspecified
parameter Θ∗ in the critical value calibration.
∗1The first forecast is at time index 188 (instead of 122 as for others)
relative to the longest possible interval length
∗2An artificial VAR coefficient matrix is used to guarantee the existence of
local homogeneity after being multiplied by 120% in the mis12 scenario.

and K = 30 are different, which are t = 122 and t = 188, respectively.

Moreover, we consider the cases where parameter Θ∗ is misspecified.
Instead of using the true underlying parameter values, i.e., Θ∗ = Θ0, we
compute critical values under each of the two misspecified hypothetical pa-
rameters, i.e., ±20% deviation on the VAR coefficients. More specifically, we
decompose matrix A and shift its eigenvalues by 20% to have 0.8×EV and
1.2 × EV, and denote the scenarios as mis08 and mis12, respectively . We
use these parameter sets to generate Monte Carlo experiments and to cali-
brate the critical values, although the series actually follow the VAR model
with Θ0. A potential problem occurs in scenario mis12, where stationarity
is not valid even in the shortest interval. To guarantee the existence of lo-
cal homogeneity, we artificially select a matrix that satisfies the stationarity
condition. The forecast accuracy of scenario RS-A with the new parame-
ters is computed and compared again with the alternative rolling window
forecasts.

Table 3 presents the forecast accuracy under the alternative or misspec-
ified hyperparameters. The results confirm the robustness of the adaptive
technique, with RMSE values very close to those in the default case where
true parameter values are used to calibrate the critical values.

3.4 Model misspecification

In the following experiment, we investigate the stability of the proposed
adaptive model in terms of model misspecification. It is necessary to answer
whether the adaptive model of order 1 provides reasonable forecast accuracy,
if the true data generating process has a higher lag order. As an illustration,
we consider the true data generating process to be a LVAR process with lag
order 5. Among other scenarios, we conduct the simulation under the RS-A
scenario where the VAR autoregressive coefficient matrix has regime shifts.
In the first regime, the underlying LVAR(5) parameter set is again computed
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from a VAR(5) model using the three NS factors extracted from the US yield
curve from 1983 to 1997. The autoregressive coefficient matrix changes
to a new value estimated by using a different sample from 1983 to 2010.
Forecasting is conducted using both a LVAR(5) model and a misspecified
model, the LVAR of order 1. The set of interval candidates is the same as
before, starting from 12 months and ending at 10 years.

Table 4 displays the forecast performance based on both the correct
and the misspecified models of LVAR(5) and LVAR(1), respectively. The
adaptive models are in most cases superior to the alternatives using various
rolling window approaches. Misspecified model LVAR(1) provides even bet-
ter accuracy with smaller RMSE values than LVAR(5). This implies that
the proposed LVAR(1) model is capable of providing reasonable forecast ac-
curacy even when it is misspecified. The simple structure is beneficial for
out-of-sample forecasts.

Rolling window (window size) Adaptive No. of
Scenario Best Worst Winning

NS1 p = 1 0.385 (60) 0.406 (24) 0.378 17/17
p = 5 0.403 (120) 0.706 (24) 0.409 11/17

NS2 p = 1 0.388 (84) 0.412 (24) 0.383 17/17
p = 5 0.408 (120) 0.695 (24) 0.416 11/17

NS3 p = 1 0.822 (84) 0.878 (24) 0.814 17/17
p = 5 0.862 (120) 1.458 (24) 0.876 11/17

Table 4: Model misspecification with the true data generating process of
LVAR(5) and time-varying VAR parameters. In the table, p = 1 and p = 5
refer to the misspecified and correct lag orders in the adaptive estimation,
respectively. Only the best and worst results of all the rolling window ap-
proaches (with the corresponding window sizes) are reported. The last two
columns contain the LVAR results and the number of cases where LVAR is
better than the rolling window approaches in terms of RMSE values.

4 Real data analysis

In this section, the proposed LVAR model is fitted to monitor and forecast
the US Treasuries, spanning January 1983 to September 2010. Each month
has a curve for interest rates of 15 maturities (3, 6, 9, 12, 18, 24, 30, 36,
48, 60, 72, 84, 96, 108 and 120 months). The short-term yields on 3 and
6 months are converted from the 3- and 6-month Treasury Bill rates on a
discount basis, available from the Federal Reserve’s H.15 release of selected
interest rates. The remaining yields with maturities of integer years are
taken from publicly available research data of the Federal Reserve Board, as
released by Gürkaynak, Sack and Wright (2007). We add the 9-, 18-, and
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30-month yields interpolated according to the parameters provided in their
data file to emphasize the fit for medium-term yields. The time evolution
of the yield curves is displayed in Figure 3
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Figure 3: Time evolution of Nelson-Siegel factors extracted from US yield
curves.

The three Nelson-Siegel (NS) factors are extracted in the framework of
Nelson and Siegel (1987):

yt(τ) = β1t+β2t

(
1− e−λτ

λτ

)
+β3t

(
1− e−λτ

λτ
− e−λτ

)
+εt(τ), εt(τ) ∼ N(0, σ2

ε )

(3)
where yt(τ) denotes the yield curve with maturity τ (in months) at time t.
We follow Diebold and Li (2006) to set λ = 0.0609 which maximizes the
curvature loading at a medium maturity of 30 months. The three factors,
β1t, β2t and β3t, represent level, slope and curvature, respectively. The three
factors’ dynamics are displayed in Figure 4.

Under the NS framework with a fixed value of λ, if there exists any
form of non-stationarity in the yield curves yt, then it is solely attributed to
changes in the sequences of the state factors, denoted as Xt = [β1t, β2t, β3t]

′.
The sample autocorrelation and cross-correlation plots of the factors are
presented in Figure 5. It shows that the NS factors are cross-dependent not
only on its own lagged values but also on the other factors. Moreover, these
factors are persistent, with slowly decaying and significant autocorrelations
and cross-correlations up to high lag orders, which cannot be easily captured
by a VAR with a low order. The persistency feature provides motivation to
employ the LVAR model to describe and forecast the factors.

At any forecast time, we use the adaptive technique to identify an interval
of local homogeneity, over which we estimate the parameters. The fitted
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Figure 4: Time evolution of Nelson-Siegel factors extracted from US yield
curves.

model is then used to iteratively compute multistep ahead forecasts of the
NS factors, which are further used to obtain the forecast of interest rates at
various maturities in the NS framework. The first forecast originates from
December 1997, where we iteratively obtain the 1-month to 12-month ahead
forecasts for January 1998 to December 1998. We then move to the next
period to identify the interval of local homogeneity and fit the LVAR model
for another set of forecasts up to a 12-month ahead forecast. This estimation
and interval selection exercise is executed until September 2009 for the last
set of forecasts between October 2009 and September 2010. A total of 142
forecasts are generated for each forecast horizon.

The identified intervals of local homogeneity from December 1997 to
September 2009 are shown in Figure 6. The plot shows that as the esti-
mation moves forward, there are some commonly identified ending periods
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Figure 5: Sample autocorrelations and cross-correlations of the three NS
factors.

of homogenous intervals, such as 1990, 1993 and 2000-2001, of which the
timing of 1990 and 2001 coincide with US economic recessions.

In addition, the forecast results of LVAR are compared with the alterna-
tive forecasts using the rolling window technique and the recursive approach.
The rolling window technique adopts a fixed window size, 60-month and 120-
month in our study, while the recursive approach uses all the past available
information. Table 5 summarizes the forecast performance of the three mod-
els for NS factors NS1, NS2 and NS3. Table 6 shows the multi-step ahead
forecast results of the US yields at 3-month, 12-month, 36-month, 60-month
and 120-month maturities. Similar interpretations could be drawn from the
two forecast results tables. In several cases, LVAR performs better than
the rolling window technique with fixed window size of 60 months, showing
smaller RMSE values. However, generally speaking, further improvement
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Figure 6: Selected intervals of local homogeneity from December 1997 to
September 2009, over which the parameters are estimated and the fitted
model is used to obtain the iterative forecasts. The vertical axis represents
the time when the estimation is made. The selected interval is marked
horizontally as a light yellow line. The dark blue line represents the interval
during which the most recent break is detected.

of the LVAR model is needed to beat the rolling window with 120-month
maturity and the recursive approach.

In fact, as a specific case of this general setting, Chen and Niu (2013)
show that restricting the state dynamics to an AR(1) model for each NS fac-
tor greatly improves forecast accuracy, and that the resulting performance
beats the alternative rolling or recursive forecast uniformly. The reason may
be due to the off-diagonal elements in the VAR autoregressive coefficient
matrix being typically sparse and close to zeros, which does not contribute
much to the improvement of forecast accuracy, but deteriorates the infor-
mation efficiency. However, as a general illustration of LVAR application,
we believe that this example provides a good scenario for monitoring and
forecasting economic and financial time series.
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NS1 h=1 h=3 h=6 h=12

LVAR 0.337 0.487 0.680 0.932

VAR Rolling 60m 0.337 0.475 0.636 0.783
VAR Rolling 120m 0.332 0.461 0.641 0.884

VAR Recursive 0.331 0.437 0.573 0.731

NS2 h=1 h=3 h=6 h=12

LVAR 0.416 0.717 1.178 2.294

VAR Rolling 60m 0.427 0.742 1.219 2.257
VAR Rolling 120m 0.417 0.687 1.069 1.844

VAR Recursive 0.412 0.662 1.003 1.747

NS3 h=1 h=3 h=6 h=12

LVAR 0.976 1.720 2.476 3.832

VAR Rolling 60m 0.927 1.635 2.375 3.288
VAR Rolling 120m 0.886 1.511 2.160 2.864

VAR Recursive 0.875 1.453 2.013 2.638

Table 5: RMSE values of the iterative forecasts for NS factors NS1, NS2 and
NS3. Three types of models are employed: the LVAR model with a time-
dependent interval of local homogeneity, a VAR rolling model with window
sizes of 60 months and 120 months, and a recursive VAR model.

5 Conclusion

We have proposed a local vector autoregressive (LVAR) model that is ca-
pable of providing reasonable forecast accuracy under both homogeneity
and structural changes. Compared to the conventional dynamic time series
models using either a rolling window with a globally fixed window size or a
recursive technique using all past information, the adaptive procedure care-
fully selects an interval of local homogeneity at any particular time point.
With this flexibility on interval selection, the LVAR model provides stable
performance both in a simulated homogeneous situation and under regime
shift scenarios.

The real data analysis provides an example of real-time monitoring and
forecasting of the yield curves. The selected intervals indicate that there
are some underlying economic interpretations behind the detection results,
thus LVAR is useful for monitoring purposes. Although the forecast results
are not satisfying, which may be due to frequent changes that are not easily
detected by a high-dimensional model setting without penalizing param-
eter uncertainty, we know from existing work that imposing specification
structures could improve predictability. We relegate discussion of further
improvement within the general LVAR framework to future work.
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y(3) h=1 h=3 h=6 h=12

LVAR 0.285 0.588 1.033 2.061

VAR Rolling 60m 0.281 0.586 1.044 1.896
VAR Rolling 120m 0.273 0.531 0.900 1.613

VAR Recursive 0.268 0.512 0.858 1.545

y(12) h=1 h=3 h=6 h=12

LVAR 0.286 0.660 1.153 2.147

VAR Rolling 60m 0.276 0.631 1.103 1.882
VAR Rolling 120m 0.261 0.578 0.987 1.665

VAR Recursive 0.262 0.562 0.930 1.559

y(36) h=1 h=3 h=6 h=12

LVAR 0.344 0.707 1.115 1.861

VAR Rolling 60m 0.326 0.664 1.031 1.557
VAR Rolling 120m 0.322 0.644 0.998 1.509

VAR Recursive 0.318 0.615 0.916 1.351

y(60) h=1 h=3 h=6 h=12

LVAR 0.350 0.650 0.977 1.510

VAR Rolling 60m 0.336 0.609 0.888 1.240
VAR Rolling 120m 0.333 0.605 0.901 1.302

VAR Recursive 0.326 0.570 0.814 1.132

y(120) h=1 h=3 h=6 h=12

LVAR 0.302 0.486 0.706 0.994

VAR Rolling 60m 0.299 0.460 0.626 0.769
VAR Rolling 120m 0.297 0.455 0.652 0.910

VAR Recursive 0.304 0.446 0.601 0.778

Table 6: RMSE values of the iterative forecasts for yields at 3-month, 12-
month, 36-month, 60-month and 120-month maturities. Three types of mod-
els are employed: the LVAR model with a time-dependent interval of local
homogeneity, the VAR rolling model with window sizes of 60 months and
120 months, and the recursive VAR model.
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